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Context. Fourier transform near-infrared spectroscopy (FT-NIRS) is of interest to fisheries 
managers for rapid age prediction in fish otoliths, yet the underlying prediction mechanism is 
unknown. Aims. To better understand drivers of FT-NIRS age prediction, we evaluated 
FT-NIRS spectra and age prediction models for otoliths of red snapper, Lutjanus campechanus, 
related to otolith structure, mass, and constituents (calcium carbonate (CaCO3) and protein). 
Methods. Spectra were collected from a set of whole otoliths (n = 84, 0–28 years) and again 
sequentially after grinding to powder and subsampling a fixed mass of each ground otolith. Protein 
content was also measured (n = 26) and related to spectra. Key results. Age prediction was 
diminished in ground and fixed-mass otolith models, but remained within 2 years of traditional 
ages. Protein content (0.43–0.92% weight) increased significantly with age, implying a concomitant 
decrease in CaCO3 content. FT-NIRS models predicted protein content to within 0.04%, but 
protein variability hindered modelling. Spectral characteristics of both CaCO3 and protein are 
evident in otolith spectra and are implicated in age-prediction models. Conclusions. Changes in 
otolith composition, mass, and structure underlie FT-NIRS age prediction, but compositional 
changes inform the majority of age prediction. Implications. These results provide a foundation 
for understanding FT-NIRS age prediction. 
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Fourier transform near infrared spectroscopy (FT-NIRS) has gained attention in the fisheries 
management community as a potential alternative to costly age estimation of fish, which 
traditionally relies on visual counts of growth bands in otoliths to estimate age (e.g. 
Campana 2001). Rapid, non-destructive scans of otoliths using FT-NIRS and subsequent 
regression modelling of spectral data with traditional age-calibration data has resulted 
in age predictions deemed mostly equivalent, from an experimental standpoint, to 
traditional estimates for both daily and annual ages across various species (Wedding 
et al. 2014; Robins et al. 2015; Helser et al. 2019; Passerotti et al. 2020a, 2020b; 
Healy et al. 2021; Wright et al. 2021). The case has also been made that FT-NIRS has 
potential to be useful in ecological studies, including discrimination of geographical 
differences manifested in otolith chemistry (e.g. Wedding et al. 2014; Robins et al. 
2015), among other potential fisheries applications. 

Studies have provided little empirical evidence of the chemical or structural basis for 
FT-NIRS age prediction in fish. Wedding et al. (2014) found that carbonate ion 
signatures were apparent in spectral data underlying otolith age calibrations, and 
Robins et al. (2015) hypothesised that water chemistry influences otolith spectral 
signatures because of changes in trace element concentrations across the lifespan. Helser 
et al. (2019) alternatively suggested that age-related changes in the otolith organic 
matrix underlie FT-NIRS age prediction based on spectral regions used in walleye 
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pollock age-prediction models. Similar regions were 
also implicated in age-prediction models for red snapper 
(Passerotti et al. 2020a, 2020b). Besides otoliths, mechanisms 
relating to the relative concentrations of mineral and organic 
constituents were also suggested as underlying FT-NIRS age 
prediction in elasmobranch tissues (Rigby et al. 2014, 
2016, 2019). No direct measurements of otolith constituent 
composition have been related to FT-NIRS age predictions. 

Most sagittal otoliths are generally thought to comprise 
calcium carbonate (CaCO3, ≥90%), organic matrix (proteins, 
collagens, and proteoglycans, ≤10%), and trace elements 
(≤1%) (Campana 1999; Payan et al. 1999; Borelli et al. 
2001; Chang and Geffen 2013), but composition is species-
specific (e.g. Degens et al. 1969; Dauphin and Dufour 2003) 
and incompletely described for most species, particularly in 
regard to the organic matrix. Past studies have identified 
age-related differences in both organic and inorganic (i.e. 
mineral) otolith constituents, suggesting that otolith cores 
are more proteinaceous than are subsequent growth bands 
(Jolivet et al. 2008, 2013), that relative protein content 
declines with age in some species (e.g. Morales-Nin 1986a, 
1986b), and that the ratio of water-soluble to water-
insoluble proteins can vary across lifespan (Hoff and 
Fuiman 1993; Hüssy et al. 2004). 

More recently, advances in the fields of proteomics and 
elemental chemistry have enabled both large-scale identifi-
cation of otolith proteins and a more complete elucidation 
of the biomineralisation process. Thomas et al. (2019) used 
proteomics to detect more than 300 proteins in otoliths of 
black bream, Acanthopagrus butcheri, that were previously 
unknown to occur in otoliths, and Thomas et al. (2020) 
characterised the 3-D protein scaffolding in salmon, Salmo 
salar, otoliths, allowing novel characterisation of proteins, 
collagens, and enzymes, and tracing their dynamic role in 
biomineralisation across the lifespan of the fish. Recent 
work by Hüssy et al. (2021a) further described trace element 
patterns in otoliths across lifespans and showed their role in 
both mineral and organic portions of the otolith. Taken 
together, these studies have shown a highly complex 
biomineralisation process (briefly summarised below) in 
which both mineral and organic matrices vary not only 
with species and age, but also spatially across the otolith. 
These factors have major implications for age prediction by 
using FT-NIRS. 

During otolith formation, collagens and collagen-like 
proteins (sometimes referred to as water-insoluble proteins) 
form the majority of the otolith organic template, including 
a large role of otolin-1, a collagen-like protein unique to 
otoliths that putatively forms the basis of the organic 
matrix on which CaCO3 is precipitated (Degens et al. 1969; 
Dunkelberger et al. 1980; Davis et al. 1995; Murayama 
et al. 2002; Thomas et al. 2019). The daily alternating 
deposition of organic matrix and CaCO3 forms the 
concentric growth bands associated with age estimation, a 
process governed by the other non-collagenous (i.e. water 

soluble) regulatory proteins which are either deposited 
within the otolith matrix or entrained into interstitial 
spaces during otolith accretion (Thomas and Swearer 2019; 
Thomas et al. 2019; Hüssy et al. 2021b). The mechanism 
for accretion of material from the saccular epithelium 
creates gradients in the endolymph fluid that can also 
translate to corresponding protein gradients along the 
accretion axis, in turn creating cyclic changes in composition, 
density, and opacity (e.g. Hoff and Fuiman 1993; Hüssy et al. 
2004; Thomas et al. 2020). There is also heterogeneity in 
elemental distribution patterns (Izzo et al. 2016; Limburg 
and Elfman 2017; Hüssy et al. 2021b), although it is 
unclear whether FT-NIRS detects elemental differences at the 
concentrations (low parts per million) present in otoliths. 
Hence, spatial heterogeneity in otolith chemistry can be 
present owing to both age and the physical mechanisms of 
otolith accretion. 

Beyond chemical composition, additional questions 
surround the relationship of FT-NIRS with physical attributes 
such as otolith size. Robins et al. (2015) compared ages 
predicted from direct regressions of otolith weight with age 
with those of FT-NIRS prediction models and found that FT-
NIRS models were more accurate, concluding that FT-NIRS 
cannot be solely reliant on otolith weight for informing age 
prediction. Passerotti et al. (2020a) found that FT-NIRS 
models predicted otolith weight better than they predicted 
age based on partial least-square (PLS) model metrics, but 
that different spectral signatures were responsible for the 
two models. However, Passerotti et al. (2020b) found that 
light penetration was attenuated in older, larger, and 
thicker red snapper otoliths, potentially hindering accurate 
age prediction in older individuals of this species. This also 
has implications for how physical light interaction with the 
otolith (i.e. sample presentation) affects age prediction. NIR 
light is known to penetrate substrates more deeply than are 
other types of infrared light (up to 10 cm; Workman and 
Weyer 2012), but this is highly dependent on the physical 
and chemical makeup of the substance and varies according 
to wavenumber region (Workman and Weyer 2012; Williams 
2019). The ability to detect chemical signatures under the 
surface layers of the otolith is of paramount interest, given 
the structural heterogeneity of constituents and the unknown 
origins of FT-NIRS age prediction overall. 

Defining the causation underlying FT-NIRS otolith age 
prediction is desirable, but linking causation to empirical 
analyte properties is difficult. The use of FT-NIRS for standard-
ised predictive analyses requires the evaluation of critical key 
assumptions, namely that concentrations of components of 
interest are in some way related to the spectral data generated 
from the technique (Chen and Wang 2001). This is a daunting 
task, given that otoliths are composites of potentially many 
measurable, yet largely unknown, components. FT-NIRS is 
used in various industries such as agriculture and pharma-
ceuticals to passively monitor sample composition for 
constituents of interest, such as, for example, protein content 
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(e.g. Williams et al. 1985). Assigning specific features of NIR 
signatures to individual constituents is not always possible, 
and often multiple similar constituents, such as different 
types of proteins, are grouped together and detected using 
combination bands found to correlate with the overall content 
of broader constituent categories (Workman and Weyer 2012). 
Hence, preliminary evaluation of the constituent changes 
underlying otolith age prediction with FT-NIRS logically 
begins with attribution of broad constituent groupings, i.e. 
mineral/inorganic and protein/organic components, with 
age-specific otolith spectral signatures. Further correlation of 
age model regression coefficients with wavenumber regions 
attributable to constituent groups would further help define 
the relationship, if only superficially. 

Towards this end, our goal was to explore the relationship 
of primary otolith constituents (CaCO3 and protein), otolith 
size (sample mass), and otolith structure (whole and ground) 
to FT-NIRS spectra and age prediction in pursuit of an 
improved, albeit basic, understanding of the NIR spectral 
correlation with age in fish otoliths. To accomplish this, we 
first compared spectral signatures of CaCO3 and Type I 
collagen with otolith spectra to identify likely areas of 
contribution of mineral and organic fractions respectively, 
to otolith spectral signatures. We then conducted experiments 
to compare FT-NIRS spectra and age prediction across various 
preparations of the same otolith set, including (1) whole, 
intact otoliths per other FT-NIRS studies, (2) the same 
otoliths after grinding to powder (hence removing the effects 
of shape and structure), and (3) a fixed-mass subsample of 
each powdered otolith (hence removing the effect of 
sample mass). We also simulated otolith accretion by using 
pure CaCO3 to test the influence of an increasing sample 
mass, but not constituent concentration, on age prediction 
(hence simulating a change in size but not ‘age’). Finally, 
otolith protein content was quantified, correlated with age, 
and the FT-NIRS prediction capability was evaluated to 
determine whether changing protein content underlies 
FT-NIRS age prediction in otoliths. 

Materials and methods 

Otolith collection and age estimation 

Red snapper otoliths were sourced from archival fishery-
independent collections taken from the south-eastern US 
Atlantic Ocean by the South Carolina Department of Natural 
Resources (SCDNR), Marine Resources Research Institute, as 
part of the South-east Reef Fish Survey and Marine Resources 
Monitoring Assessment and Prediction (MARMAP) sampling 
program between 2011 and 2016. Generally, left otoliths 
were sectioned for ageing, leaving the right otolith available 
for FT-NIRS. A traditional calendar age estimate was 
generated from the left otolith by using methods outlined in 
Wyanski et al. (2015). These ‘traditional’ ages were used as 

reference values to inform FT-NIRS age-prediction models 
as well as for other age-correlation models in this study. 
The paired right otoliths corresponding to these ages were 
used for the subsequent analyses below. 

Spectral comparison of otoliths and constituents 

To explore the relationship of the mineral and organic 
fractions of otolith composition with the red snapper 
otolith FT-NIRS spectral signature, we visually compared a 
spectrum from a whole red snapper otolith with those of 
other analytes representative of the two fractions. The 
mineral portion was modelled using powdered CaCO3 in 
the form of precipitated calcite (Amresco, CAS# 471-34-1), 
and the organic portion was modelled using a Type I collagen 
signature described in Kandel et al. (2020). In addition, we 
compared individual vibrational mode peak assignments 
mapped by Hopkinson et al. (2017) for CaCO3, which are 
driven by the activity of the CO3

2− anion and hence O–H 
bond signatures, to help visualise the complexity of the 
molecular interactions underlying the relatively broad NIR 
signatures of composite materials. Alignment of peaks 
underlying the CaCO3 signature with perceived features in 
the otolith signature were considered to represent areas of 
mineral influence, and those aligned with the Type I collagen 
signature were considered to represent areas of organic 
influence, with the understanding that there are numerous 
additional and potentially unknowable molecules present in 
otoliths that could also influence the NIR signature. The form 
of CaCO3 in otoliths is typically aragonite, but calcite is used 
here for comparison because it is commercially available in 
purified form and, in comparison, presents only minor 
variations in NIR signature (Gaffey 1987; Hopkinson and 
Rutt 2016). However, we did test for consistency of aragonite 
as the predominant CaCO3 polymorph across red snapper 
otoliths of different ages and ruled out any effect of changing 
polymorph on spectral comparisons. The methods and results 
for this analysis can be found in Supplementary materials. 

Sample structure and sample mass experiments 

A set of 84 otoliths ranging in age from 0 to 28 years was 
selected for evaluation of the effects of sample structure 
(whole vs ground) and sample mass on FT-NIRS spectral 
signatures and age prediction. Structure and mass experi-
ments are further described below. Otoliths were stored dry 
in paper coin envelopes under ambient conditions from time 
of collection to the time of experiments. Differences in the 
time elapsed since collection can affect spectral signatures, 
potentially owing to moisture content (Robins et al. 2015); 
hence, before structure and mass experiments, otoliths 
were dried at 55°C for 24 h in a sealed oven containing an 
excess of desiccant. After 24 h, otoliths were allowed to 
come to room temperature inside the oven, and were then 
individually removed immediately before FT-NIRS scanning 
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as outlined below. After scanning, otoliths were weighed to 
the nearest 0.001 mg on a Mettler Toledo microbalance. 

Sample structure: grinding experiment 

After drying, the 84 otoliths were individually ground to 
powder with a tungsten-carbide ring mill until the entire 
sample easily passed through a 250-micron sieve. Grinding 
time was standardised among samples to help ensure 
uniform particle size, and the ring mill was thoroughly 
cleaned between samples to avoid cross-contamination. 
The full mass of each powdered otolith was loaded into a 
22 mm cylindrical borosilicate glass cuvette and scanned 
as described below. Spectral signatures and FT-NIRS age 
prediction were evaluated and compared with that of 
whole intact otoliths on the basis of differences in PLS 
regression parameters. 

Sample mass: fixed-mass experiment 

Following scanning of the full volumes of ground otoliths, a 
300 mg subsample was taken from each ground otolith to 
comprise fixed-mass ground (FMG) samples of each. Only 
otoliths aged ≥3 years were included in the fixed-mass 
analysis (n = 71), because most of the otoliths aged 
0–2 years were smaller than 300 mg. Each FMG sample was 
placed into a clean cuvette and scanned in an identical manner 
to the full ground otoliths. Spectral signatures and FT-NIRS 
age prediction were evaluated and compared with those of 
intact and ground otoliths on the basis of differences in PLS 
regression parameters. 

Simulated CaCO3 accretion 

To evaluate the effects on age prediction of increasing sample 
mass without associated increases in analyte (i.e. age-related 
organic compound) concentration, powdered CaCO3 

(Amresco, CAS# 471-34-1) was scanned in quantities ranging 
from 100 to 1000 mg in 100 mg intervals. Spectra were 
collected as for otolith powders as outlined below. To model 
the effect of increasing otolith mass on age prediction, each 
quantity of CaCO3 powder was assigned a dummy variable 
of ‘layer age’, ranging in value from 1 to 10 years according 
to its sample mass (e.g. 100 mg = 1 year old, 200 mg = 
2 years old) and three replicates of each mass were scanned 
for a total of n = 30 data points. An age-prediction model 
was created using PLS regression as described for otoliths 
above, and resulting regression parameters were evaluated 
for goodness of fit. Optimised wavenumber regions, 
regression coefficients, and factor loadings for the CaCO3 

‘layer age’ model were compared with those from otoliths 
in all preparations to infer signatures related to mineral 
CaCO3 content and increasing sample mass in the absence 
of otolith organic components. 

Protein/amino acid content 

To examine the relationship between protein content and 
FT-NIRS age prediction in otoliths, acid-hydrolysed amino 
acid content was measured and used to estimate total 
protein content in n = 26 otoliths ranging in age from 0 to 
25 years. Subsamples of ground otoliths for which spectral 
data were previously collected as above were analysed for 
amino acid content at the Molecular Structure Facility, 
University of California, Davis Genome Centre (Davis, CA), 
by using the acid hydrolysis and post-column ninhydrin 
detection methods described in Cooper et al. (2000). Protein  
content for each otolith was calculated by summing the 
total AA residues quantified for each sample, after correction 
for recovery of standards analysed simultaneously with 
otolith samples (average correction = 1.9%). During acid 
hydrolysis, asparagine and glutamine are converted to 
aspartic (ASX) and glutamic acid (GLX) respectively; 
hence, the reported totals for ASX and GLX reflect these 
combined values. 

To evaluate the ability of FT-NIRS to detect and predict 
protein content from otoliths, PLS regressions were fit to  
spectral data from all otolith preparations and related to 
protein content as measured above. Data preprocessing was 
performed as noted for age-prediction models below, and 
optimisation was performed to identify best-fit protein-
prediction models. Optimised wavenumber regions, regres-
sion coefficients, and factor loadings for protein-prediction 
models were compared with those from otoliths in all 
preparations and CaCO3 models to identify spectral signatures 
unique to otolith protein content. Changes to individual 
amino acid concentration (% otolith weight) were plotted 
graphically as a function of age, and linear trends were 
evaluated by calculating Pearson product–moment correla-
tion coefficients for each. All regressions and associated 
analyses were performed using R (ver. 3.4.3 ‘kite-eating 
tree’, 2017). 

FT-NIRS data collection/analysis 

FT-NIR spectral data for samples in all preparations (whole 
intact otoliths, whole ground otoliths, fixed-mass subsamples 
of ground otoliths (FMG), and powdered CaCO3) were 
collected using a Bruker Matrix-I FT-NIR spectrometer 
(Bruker Scientific, Billerica, MA, USA). Samples were 
positioned on the sample window according to their 
preparation. Whole intact otoliths were scanned by placing 
them directly on the centre of the sample window, convex 
side down, positioned so that the rostral axis of the otolith was 
horizontal in relation to the sample window (e.g. Robins et al. 
2015). Powdered samples were loaded into individual 22 mm 
cylindrical borosilicate glass cuvettes and placed onto the 
sample window with a microsample collar (Bruker Scientific) 
fitted to the sample window. In total, 64 spectral scans were 
acquired for each sample at a frequency of 16 cm−1 along the 
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entire NIR spectrum (3600–12 000 cm−1) and averaged to 
produce a single representative spectrogram for each 
sample in each presentation. 

Spectral data analysis was conducted using the OPUS 
software suite (ver. 7.8; Bruker Scientific, Billerica, MA, 
USA). Spectral data were fitted to traditional otolith ages 
and protein concentrations by using PLS regression (Chen 
and Wang 2001). Calibration models were evaluated for 
prediction capability using a ‘leave one out’ method of 
cross-validation, and goodness of fit was judged on the 
basis of the coefficient of determination (R2), root mean 
square error of cross-validation (RMSECV), and residual 
prediction deviation (RPD; a ratio of the standard deviation 
to the standard error of prediction). The RMSECV metric 
was minimised, the R2 maximised, and RPD was ≥3 and 
maximised to be considered optimal (Williams 2019). 
Because of small sample sizes (n ≤ 84) for each of our 
experiments, only calibration models were evaluated because 
splitting samples into separate smaller calibration and 
validation sample sets might promote over-confidence in 
validation models (Williams 2013). 

For our purposes, otolith age-prediction models for each 
experimental treatment group were constructed in the follow-
ing two forms: (1) ‘standardised’ models used a standardised 
wavenumber range of 6104–4200 cm−1 to facilitate comparison 
based on important wavenumber regions for predicting age in 
previous publications (Passerotti et al. 2020a, 2020b); and 
(2) ‘optimised’ models in which wavenumber regions were 
optimised to fit the unique dataset and treatments applied in 
this study to facilitate identification of potentially unique 
spectral features arising from these variables. The same 
process was also used to fit PLS regressions for predicting 
otolith protein content and calcium carbonate ‘layer age’ as 
described above. 

Preprocessing for all otolith models except the FMG models 
consisted of a Savitzky–Golay first derivative transformation 
with 17 smoothing points (polynomial order = 2), whereas 
FMG models also underwent vector normalisation using the 
standard normal variate (SNV) function in addition to the 
Savitzky–Golay transform. Calcium carbonate signatures 
were also preprocessed using Savitzky–Golay transformation 
and SNV. Savitzky–Golay transformation is typically used to 
correct for baseline shifts owing to light scatter from 
differences in particle size and/or other physical differences 
among samples, whereas SNV normalises the data to a 
mean of 0 and standard deviation of 1. Analyses of absorbance 
patterns at specific wavelengths were performed using 
preprocessed data for consistency with age-prediction 
models; given that all spectra were subject to first derivative 
transformation, this means that changes associated with 
peaks in raw spectral data will be offset to either side of the 
original peak in the transformed data. Hence, changes to 
specific features in absorbance patterns, e.g. collagen 
features, were evaluated across a small range of nearby 

wavenumbers and denoted with approximate wavenumber 
location. 

Results 

Spectral comparison 

Comparison of representative spectral signatures from CaCO3 

and Type I collagen identified features from each that 
potentially contribute to the otolith signature, and curve 
deconvolution for the CaCO3 signature from Hopkinson 
et al. (2017) provides additional insight into the underlying 
vibrational modes of the CO3

2− anion contributing to the 
overall shape of the CaCO3 and, potentially, the otolith 
spectrum (Fig. 1). In the raw otolith signature, water 
features near 6840 cm−1 and 5160 cm−1 are evident as 
identified previously for otoliths in Gauldie et al. (1998), 
and similar but broader, more flattened peaks are apparent 
in the collagen signature. These peaks are notably absent 
from the CaCO3 signature, which instead contains a smaller 
peak near 7200 cm−1 and narrow peaks near 5334 cm−1 

and 5008 cm−1. Additional CaCO3 peaks near 4630 cm−1 

and 4501 cm−1 are offset from any visible features in the 
otolith signature, but the most prominent CaCO3 peak near 
4268 cm−1 aligns with the leading edge of the broader 
otolith peak near 4310 cm−1. This broader peak might also 
be influenced by the CaCO3 peak at 4346 cm−1. Collagen 
features that align with those in the otolith signature occur 
near 5924 cm−1 and 5778 cm−1, corresponding to known 
methyl (–CH3) and methylene (–CH2) group vibrations 
respectively (Workman and Weyer 2012), as well as smaller 
peaks near 4898 cm−1 and 4596 cm−1. 

Grinding experiment 

Raw absorbance signatures of ground otoliths were similar to 
those of intact otoliths, but absorbance was lower overall with 
apparently reduced effects of light scattering and baseline 
drift (i.e. the ‘fanning’ effect in spectra across age groups in 
whole otoliths; Fig. 2a, b). The relative magnitude of 
individual spectral features also appears somewhat reduced 
or flattened, such as, for example, the –OH overtone peak 
near 6900 cm−1 and smaller features between 4600 and 
5000 cm−1. Preprocessed absorbance signatures were also 
similar in shape to those of intact otoliths (Fig. 3a, b), 
but differences in signatures of ground Age-0 otoliths are 
much more apparent than in intact otoliths, especially near 
7200 cm−1 and ~4600–4500 cm−1. 

Ages predicted with the standardised model were less 
accurate for ground otoliths than intact otoliths on the basis 
of RMSECV (Table 1, Fig. 4), with more deviation in 
the youngest and oldest ages and in a more non-linear 
pattern. Nonetheless, the ground otolith standardised model 
approached an RPD of 3 and R2 of 0.88, and the optimised 
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Fig. 1. Comparison of NIR spectral signatures from powdered Type I collagen (Kandel et al. 2020), whole intact red snapper otolith 
(age = 16 years), and powdered calcium carbonate. In a, resolved CaCO3 band contributions from respective vibrational modes are 
represented with grey curves (from Hopkinson et al. 2017) and grey dashed lines are given to visualise alignment of deconvolved 
CaCO3 peaks with other spectra. Numbered peaks in the otolith spectrum denote water features as described by Gauldie et al. 
(1998). In  b and c, subsets of the spectral range containing known collagen peak assignments (numbered) are shown, with red dashed 
lines given to visualise alignment of collagen peaks to the otolith spectrum. 

model, which overlapped intact otolith optimised regions and 
added the region at ~7450–6770 cm−1, improved to an 
RPD of 3.15 and R2 of ~0.90. Regression coefficients were 
similar between the whole-ground and whole-intact models 
for the regions near 5800 cm−1 and 5200–4900 cm−1; all 
other peaks occurred at similar locations but were of 
opposite direction (Fig. 5a). On the basis of comparisons of 
transformed spectra in Fig. 3, these differences could stem 
from broadening of absorbance peaks in ground spectra, 
which would shift the inflection points highlighted in the 
transformed spectra and, hence, the regression coefficients. 

Fixed-mass experiment 

Raw absorbance signatures of fixed-mass ground (FMG) 
otolith samples were similar in pattern but were relatively 
flattened and with fewer prominent features than for the 
other otolith preparations (Fig. 2c). Preprocessed spectra 
were likewise similar in shape to those from the other otolith 

preparations but with far less variation in magnitude among 
age groups as evidenced by spacing of absorbance values 
under peak curves (Fig. 3c). 

Age-prediction models for FMG samples had diminished 
resolution relative to those from other preparations and 
the models became more  non-linear (Table 1, Fig. 4), but 
age was nonetheless predictable from fixed-mass samples 
and, hence, not reliant on otolith size or structure to 
inform age models. Standardised region models had the 
lowest R2 and RPD of all the age models, but also used 
fewer factors (rank = 3) to explain the age relationship, 
with Factor 1 explaining ~67% of the spectral variance 
(Fig. 6). The optimised model performed well relative to 
other published FT-NIRS age prediction models, predicting 
age to within ~2 years and with RPD of >3. In the 
optimised model, the number of explanatory factors 
increased to n = 8, but the variance explained by Factor 1 
was the highest of all models at 79%. Regression 
coefficients for FMG samples generally followed the 
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Fig. 2. FT-NIR spectral signatures for red snapper otoliths in (a) whole intact, (b) whole ground, and (c) fixed-mass 
ground preparations, averaged by age. 
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Fig. 3. Red snapper otolith (a, b) first-derivative and (c) first-derivative + SNV preprocessed FT-NIRS spectra, averaged 
by age, for each sample treatment. Arrows denote the absorbance value of the oldest otolith (age = 28 years) near 
5200 cm−1, for reference. Fixed-mass ground samples did not include ages <3 years. Black boxes delineate the 
wavenumber regions included in the standardised age-prediction models, and grey shading delineates wavenumber 
regions included in optimised age-prediction models. 
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Table 1. PLS prediction model results for red snapper otolith age and calcium carbonate ‘layer age’ regressions. 

Model n Wavenumber region(s) R2 RMSECV RPD Bias Rank 

Whole intact, standardised 84 6104–4200 93.8 1.71 4.03 −0.014 5 

Whole intact, optimised 84 7456–6768 94.4 1.62 4.23 −0.016 4 

6032–5496 

4952–4768 

Whole ground, standardised 84 6104–4200 88.0 2.38 2.89 −0.013 4 

Whole ground, optimised 84 7456–6768 89.9 2.19 3.15 −0.011 5 

6032–5496 

4952–4768 

Fixed-mass ground, standardised 71 6104–4200 83.4 2.48 2.45 0.047 3 

Fixed-mass ground, optimised 71 6104–4544 89.0 2.02 3.02 0.033 8 

Powdered CaCO3, standardised 30 6104–4200 87.4 1.02 2.82 0.008 5 

Powdered CaCO3, optimised 30 6104–4600 90.7 0.878 3.27 0.009 5 

patterns of whole-ground otoliths but with minor changes 
in magnitude near 6000–5800 cm−1, 5150 cm−1, and  
4700–4300 cm−1 (Fig. 5b). Peak shifting was also evident 
near 5300 cm−1 and 4550 cm−1. Hence, grinding appears 
to have had the largest overall effect on regression 
coefficients across all otolith treatments, ostensibly because 
of the changes in the interaction of NIR light with whole 
intact otoliths relative to ground otoliths. 

Simulated CaCO3 accretion 

Layering of powdered CaCO3 resulted in predictable ‘layer 
age’ by using a PLS regression model (Table 1, Fig. 7), 
despite preprocessing of spectral data, which is generally 
used to remove effects from physical variations in samples 
occurring secondarily to the primary analyte of interest 
(Rinnan et al. 2009). Preprocessed spectra for ‘layer ages’ 
highlighted features of interest for comparison with 
otoliths, including the absence of prominent peaks between 
~5960 and 5700 cm−1, the less prominent but more 
numerous features in the 5400–5000 cm−1 range, and the 
two small peaks near 4600 and 4500 cm−1 that lead up to 
the prominent peak near 4300 cm−1, which is much 
narrower than that seen in otoliths (Fig. 7). Layer-age 
models predicted increasing sample mass/thickness in the 
standardised region to within one layer (RMSECV = 1 or  
100 mg sample mass), and with an RPD approaching 3. 
When optimised for wavenumber region, RMSECV declined 
to <1 with RPD of >3, and wavenumber region 6104– 
4600 cm−1. Regression coefficients for the layer-age 
standardised model differed from ground-otolith age 
patterns in distinctive ways (Fig. 5c). Primarily, the regression 
coefficient pattern consisted of mostly broad features with 
few prominent, recognisable peaks, and did not follow 
otolith age coefficients in any predictable manner. 
Some regions exhibited similarity such as those near 

5850–5600 cm−1, 5200–5050 cm−1, and 4800–4600 cm−1, 
but remaining regions were all of opposite magnitude for 
otolith age models relative to layer age. Hence, where 
regression coefficient patterns between these models 
overlap, we can hypothesise that the mineral component of 
the otolith composition is contributing to the otolith age 
model, and where coefficients do not coincide or differ in 
direction, other factors, e.g. organic constituents might be 
more influential. 

Protein/amino acid content 

Protein comprised a small proportion of red snapper otoliths, 
ranging from 0.43 to 0.92% composition by weight, and 
protein concentration increased linearly with age 
(R2 = 0.651, P < 0.0001; Fig. 8). Corresponding amino acid 
(AA) concentrations (% otolith weight) were positively 
correlated with age in all cases (r ≥ 0.478, P ≤ 0.014), but 
individual variation was also apparent to varying degrees, 
depending on the AA (Fig. 9). As a proportion of total 
protein weight, AA-specific age-related trends are apparent 
and 9 of 15 were significantly correlated, suggesting the 
relative quantities and specific types of proteins present in 
otoliths vary significantly with age (Fig. 10). 

Prediction of otolith protein concentration from spectral 
data was not as successful as that of age, and varied with 
otolith preparation (Table 2). Protein prediction using the 
standardised region model was poor (RPD = 1.58) and was 
only slightly improved by utilising the optimised region 
model (RPD = 1.76, Fig. 11). Protein concentrations for 
three otoliths stood out as outliers as identified in Fig. 12, 
and are also visibly distinct in several AA plots (e.g. PRO 
and GLY) in Fig. 9. In most protein-prediction models, one 
or more of these otoliths were identified as outliers via 
Mahalanobis distance calculations of spectral data and were 
consistently under-predicted by models, as indicated in 
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4544 cm−1 in FMG samples, which overlap with important 
regions for both FMG age-prediction models (Table 1). These 
regions are documented as useful for protein prediction 
(Workman 2001) and encompass various vibrations of N–H, 
C–N, and C=O bonds (Workman and Weyer 2012). 

Protein-prediction models suggest that protein is 
detectable in intact and FMG otoliths by using FT-NIRS, but 
the low percentage composition and high variability with 
age make direct prediction challenging. Because protein 
concentration increased with age independently of sample 
mass in FMG samples, we can hypothesise that the CaCO3 

component, likewise, decreased in concentration with age. 
Because of its relatively higher concentration and ostensibly 
easier detection, correlation of CaCO3 dynamics might be 
more easily modelled with age, which would manifest in 
negative correlation of regression coefficients at organic (i.e. 
collagen)-specific wavenumbers, or in positive correlation 
at CaCO3-specific wavenumbers. When coefficients were 
compared between the standardised CaCO3 layer age and 
FMG otolith age models, most collagen-specific wavenumbers 
were positively correlated with age, including the 4688– 
4544 cm−1 region encompassing optimised protein-prediction 
models, whereas CaCO3-specific wavenumbers were not 
overtly influential (Fig. 5c). Although regression coefficients 
can be difficult to interpret when based on transformed data, 
this analysis solidifies the complementary relationship of 
these features with age and suggests that both mineral and 
organic signatures are used concordantly to predict age-
related changes in percentage composition independent of 
sample mass. 

Fig. 4. Red snapper otolith PLS age regressions for ‘standardised’ 
region (6104–4200 cm−1) models (solid lines) relative to a 1:1 
relationship (dashed lines) on the basis of (a) whole intact, (b) whole 
ground and (c) fixed-mass ground otolith spectra. 

Discussion 

Typically, the first step in establishing a calibration model for 
spectroscopic prediction of an analyte is to identify all 
potential variables affecting the system under investigation 
(Beebe et al. 1998). In the case of fish otoliths, there are 
potentially hundreds of individual components comprising 
the structure itself, assuming individual organic matrix 
constituents (e.g. proteins, proteoglycans), trace elements, 
and the remaining mineral fraction act individually to alter 
the NIR signature. The various types of vibrations that each 
molecule within the constituents will undergo in the 
presence of NIR light, and how these molecules interact 
with all others, must also be considered (Siesler et al. 2002;

Fig. 11a, c. Hence, these points were removed and prediction 
models recalculated (reduced models, Table 2, Fig. 11b, d). 
Reduced models were successful at predicting protein 
concentration to within ~0.04% in whole intact otoliths 
and ~0.02% in FMG samples. Wavenumber regions used in 
optimised protein-prediction models were narrow, focusing 
on 4688–4600 cm−1 in whole intact otoliths and 4600– 

Workman and Weyer 2012). The superficial comparison of 
the otolith spectral signature with that of individual 
constituents such as collagen and CaCO3 is a first attempt 
to understanding the primary factors influencing FT-NIRS 
age prediction. NIR spectral signatures generally comprise 
broad, overlapping peaks in the combination and overtone 
regions of the NIR electromagnetic spectrum, which can be 
difficult to assign to specific chemical bond vibrational 
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modes even when all constituents are known at the molecular 
level (Alm et al. 2007; Workman and Weyer 2012). A telling 
visualisation is the number of individual peaks underlying the 
CaCO3 signature presented herein (Fig. 1), which encompass 
at least seven features demonstrating characteristic types of 
vibrational modes stemming from a single carbonate ion 
(Hopkinson et al. 2017). With that in mind, we can then 
consider the complexity that must underlie the Type I 
collagen (C65H102N18O21) signature (Kandel et al. 2020), 
the full complement of vibrational modes for which, to our 
knowledge, have not been fully resolved in the literature. 
There are also necessary considerations for physical variables 
related to the otolith and its presentation to the NIR light, such 
as varying shape, particle size, specular reflection, opacity, 
and density (Workman and Weyer 2012), at least some of 
which are not constant within individual otoliths (e.g. growth 
bands of different composition and optical properties) nor 
across otoliths of different ages. To put it simply, it is 
complicated. Hence, the spectral-signature comparisons 
herein are not meant to be all-encompassing, but rather 
attempt to relate the basic relationship between mineral and 
organic fractions of the otolith to FT-NIRS age prediction, 
with the understanding that there are numerous other 
possibilities for constituents and physical interactions to 
shape the otolith spectral signature. 

The results of this study have confirmed the ability of 
FT-NIRS to detect age-related chemical changes in otoliths, 
independent of concomitant changes in otolith size with 
age, and that these chemical changes do not arise from any 
systematic differences in crystal structure with age, 
although the random occurrence of atomic substitutions in 
the crystal lattice and any associated effect on FT-NIRS 
signatures cannot be addressed with the current data. 
However, some effects of physical changes, arising from the 
inherent characteristics of the whole otolith structure and 
how it changes with age, are evident in contributing to age 
prediction, and are important in understanding the impacts 

of sample presentation for future FT-NIRS applications. 
Finally, otolith protein content and associated age-related 
amino acid dynamics reported herein provide insights into 
the complexities of the otolith organic matrix and its 
potential to inform FT-NIRS applications for age prediction 
and beyond. 

Protein made up a small but measurable portion of red 
snapper otoliths by weight and was not well predicted from 
spectral signatures, without the removal of outliers to reduce 
sample-set variability. However, the positive correlation of 
protein concentration with age provides a potential chemical 
basis for age prediction beyond simple correlation of overall 
spectral absorbance with increased otolith size. To our 
knowledge, estimates of red snapper otolith total protein 
content are not published elsewhere. Lueders-Dumont et al. 
(2020) documented increasing intracrystalline nitrogen 
content with otolith weight in three red snapper otoliths 
(~600–1100-mg otolith weight, ~1–6 years old on the 
basis of otolith weight-at-age reported herein), but did not 
report total protein content. The adult otoliths of another 
lutjaniid, Lutjanus ehrenbergii, averaged ~0.6 ± 0.1% protein 
by weight, which also corroborates the low percentage 
composition we report herein (McMahon et al. 2011). Protein 
content for other species reported in the literature range 
from 0.16% to over 10% by weight, but most reported 
concentrations are below 3% (Degens et al. 1969; Morales-
Nin 1986a, 1986b; Baba et al. 1991; Sasagawa and Mugiya 
1996; Hüssy et al. 2004). Ontogenetic comparisons of 
otolith protein concentration are rare, but those in existence 
have found juvenile otoliths to have higher protein 
concentrations than those of adults (Morales-Nin 1986a, 
1986b). Jolivet et al. (2008), likewise, showed organic 
fractions to be higher in otolith cores than in subsequent 
growth bands. We did not see this trend in red snapper 
otoliths. We hypothesise that the rapid otolith accretion 
occurring in species with large otoliths results in high 
mineral-to-protein ratios through all life stages, a 
mechanism that has been suggested to explain low protein 
or nitrogen content in other species with large otoliths (K. 
McMahon, pers. comm.; Lueders-Dumont et al. 2020). To 
our knowledge, no other studies have investigated protein 
concentration dynamics over continuous, multi-year time 
scales as a metric for age estimation. 

Increasing sample mass without increasing constituent 
concentration can lead to a false ‘age’ effect, as was demon-
strated in our CaCO3 layer-age experiment. Because we 
know the composition of the CaCO3 powder to be uniform in 
concentration, we can hypothesise that the wavenumbers 
correlated with the false ‘age’ effect resulted from the 
persistent carbonate ion signature coupled with changes to 
light absorption/penetration inherent to increasing sample 
mass and thickness. Although wavenumber ranges used in the 
‘layer-age’ prediction models were similar to those used in the 
otolith age models, the specific absorbance patterns varied 
substantially, and the peaks associated with ‘layer age’ might 
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Fig. 8. Red snapper otolith weight (g) and protein concentration (% otolith weight) as a function of age, with best-fit regression lines 
(dashed) and 95% confidence intervals (grey) plotted. 

simply correspond to the molecular bonds present in CaCO3 

that are most sensitive to changes in light penetration with 
an increasing layer thickness, similar to the limitations of 
light penetration documented in Passerotti et al. (2020b). 

Other physical considerations are apparent when age-
prediction capability is compared in ground and intact 
otoliths. Altering the sample structure and presentation of 
whole intact otoliths by grinding them reduced explained 
variance by ~6% and increased model error by ~40% in 
standardised models, but did not inhibit age-prediction 
capability completely. Further, in both whole ground and 
FMG samples, the age prediction regression became more 
non-linear with grinding and subsampling respectively. This 
suggests that the ordered structure of whole otoliths and 
the associated layered growth pattern is more conducive to 
linear age-prediction modelling than are homogenised 
samples, which is contrary to most reported effects of 
grinding on NIRS prediction (e.g. wheat kernels; Williams 
2019). One potential explanation for this observation is the 
spatial heterogeneity of protein distribution documented in 
otoliths owing to the precipitation of otolith material from 
the saccular epithelium. Concentration gradients are present 
in the otolith cavity, which result in higher constituent 
concentrations, namely proteins, in areas in close contact with 
epithelium (e.g. Payan et al. 1999). The otolith sulcus is 
generally the site in direct contact with the cells responsible 
for deposition of protein matrix onto the surface of the 
accreting otolith (Dunkelberger et al. 1980) and collagen 
concentration is also highest along the sulcus (Murayama 
et al. 2004). Coincidentally, the sulcal face (convex side) of 
the otolith is the focal point for scanning in all studies 
conducted, based on the recommendation of Robins et al. 
(2015), which may improve age prediction relative to that of 
other sample presentations because of the closer proximity of 
integrated proteins to the NIR light. Otolith chemical 
gradients can also reflect the composition of the endolymph 
at specific points in time owing to entrapment of 

endolymph in interstitial spaces during otolith mineralisation 
(Thomas et al. 2019; Lueders-Dumont et al. 2020) and, hence, 
might reflect age-specific trends that also vary with habitat, 
diet, or physiology, because these factors influence the 
composition of endolymph as well (Thomas et al. 2017). In 
ground otoliths, the model cannot incorporate variation 
owing to size, shape, or layering structure so as to improve 
the prediction. Even with corrective preprocessing, there 
can still be variation owing to pathlength (the distance the 
light travels through the sample) incorporated into the 
model, as was evidenced by the ‘layer-age’ experiment, 
which might contribute to better NIRS age prediction in 
whole samples because of the effect of otolith size and 
thickness. Ostensibly, attenuation might occur even over 
small ranges of otolith size because of differences in density, 
opacity, and layering of the structure (e.g. Hüssy et al. 2004). 
Particle-size and light-scatter effects are generally reduced in 
ground relative to whole grains and seeds (Williams 2019), 
and the same is apparent in red snapper otoliths. Overall, 
the assumption that the behaviour of light is uniform as it 
passes through inherently heterogeneous otoliths must be 
rejected, and acknowledgement made of the physical effects 
surrounding FT-NIRS analysis of otoliths. Additionally, non-
linear spectral modelling techniques should be explored for 
improved age prediction given the possibility that age-
related constituent changes are better described with non-
linear relationships. 

The spectral region 4688–4544 cm−1, which is known to be 
associated with protein discrimination in a range of other 
NIRS applications (Workman and Weyer 2012), was used to 
inform the optimised age-prediction model for FMG samples 
but was not included in whole otolith optimised age models. 
This might seem to discount previously published theories e.g. 
Helser et al. (2019) that FT-NIRS age models reflect changes in 
protein concentration with age; however, this is not 
necessarily the case. Vibrational modes are harmonic; 
hence, the impact of one type of bond vibration will appear 
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Fig. 9. Red snapper otolith amino acid concentrations (% otolith weight) for aspartic acid/asparagine (ASX), threonine 
(THR), serine (SER), glutamic acid/glutamine (GLX), proline (PRO), glycine (GLY), alanine (ALA), valine (VAL), isoleucine 
(ILE), leucine (LEU), tyrosine (TYR), phenylalanine (PHE), lysine (LYS), histidine (HIS), and arginine (ARG) plotted by age 
(traditional otolith age in years). Correlation coefficients and significance are given for each regression. 

at multiple points in the NIR spectrum, primarily as 
combination bands in the lower wavenumber regions and 
again as overtones at higher wavenumbers. Proteins and 
peptides (detected in NIR spectra using their amide 
content) can be detected in other regions including 10 277– 

9804 cm−1, 6667–6536 cm−1, 4878–4854 cm−1 and 4400– 
4000 cm−1 (Workman and Weyer 2012). Hence, exclusion 
of a specific wavenumber from a model does not mean 
other corresponding molecular vibrations are not present 
elsewhere in the signature. The 4688–4544 cm−1 region 
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Fig. 10. Red snapper otolith amino acid concentration (% total protein weight), for aspartic acid/asparagine 
(ASX), threonine (THR), serine (SER), glutamic acid/glutamine (GLX), proline (PRO), glycine (GLY), alanine 
(ALA), valine (VAL), isoleucine (ILE), leucine (LEU), tyrosine (TYR), phenylalanine (PHE), lysine (LYS), 
histidine (HIS), and arginine (ARG) plotted by age (traditional otolith age in years). Correlation coefficients 
and significance are given for each regression. 
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Table 2. Outcomes from FT-NIRS prediction of red snapper otolith protein concentration (percentage otolith weight) using PLS regression 
models. 

Model n Wavenumber region(s) R2 RMSECV RPD Bias Rank 

Intact protein, standardised 26 6104–4200 59.9 0.078 1.58 8.3e−5 2 

Intact protein, optimised 26 7456–6768 6400–6024 67.9 0.070 1.76 1.3e−4 2 

Intact protein reduced, optimised 23 4688–4600 86.3 0.035 2.7 5.0e−4 2 

Fixed-mass ground protein, standardised 21 6104–4200 30.9 0.083 1.2 8.6e−4 1 

Fixed-mass ground protein, optimised 21 6032–5496 52.9 0.069 1.46 4.0e−3 8 

Fixed-mass ground protein reduced, optimised 18 4600–4544 90.5 0.019 3.25 8.1e−5 5 

Fig. 11. Red snapper otolith protein PLS regression model results for FT-NIRS predicted protein concentration (solid lines) 
relative to a 1:1 relationship (dashed lines) on the basis of spectra from (a) whole intact, (b) whole intact minus outliers 
(reduced), (c) fixed-mass ground (FMG) and (d) FMG minus outliers sample sets. Concentration outliers that were 
removed for "reduced" models are denoted in a and c with red asterisks. 

reflects C–H, C=O, C–N and N–H bonds, all of which are 
present in protein molecules. Overtones of C–H vibrations 
appear between 6030 and 5500 cm−1, followed by N–H 
overtones between 6770 and 6030 cm−1 (Workman and 
Weyer 2012), and both of these regions are included in 
whole otolith optimised age models. Additionally, the age-
correlated decrease in mineral fraction that ostensibly 
happens concurrent to the increasing organic fraction is 
itself measurable and might produce a more easily detectable 

and less variable signal than do organic components because 
of the higher percentage composition of CaCO3. This type of 
correlation, in which a characteristic is measured via the 
change in an associated but more easily measured constituent, 
is commonly used in NIRS analyses (Williams 2019). Hence, 
the effect of changing protein content on age prediction is 
captured at multiple points throughout the spectral signature, 
and at wavenumber regions associated with both protein and 
carbonate molecules, an argument that is supported by our 
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Fig. 12. Red snapper otolith protein concentration (% otolith weight) 
plotted as a function of otolith weight. Samples indicated by red asterisks 
were identified as outliers in protein prediction PLS regression models 
and were removed to produce “reduced” protein-prediction models. 

analysis of age model regression coefficients, using carbonate 
and collagen-associated wavenumbers. As such, both the 
magnitude and direction of correlation are important when 
evaluating the influence of wavenumber regions on age 
models. 

Age-related trends in amino acid concentrations relative to 
total protein weight suggest that the composition of otolith 
proteins varies significantly across the lifespan of red 
snapper, which has manifold impacts on how spectral 
signatures of otoliths change with age. Amino acids contain 
characteristic amide groups in varying quantities and 
molecular configurations and, in addition to the overall 
quantity of bonds, their positioning within the amino acid 
structure as well as protein folding patterns affect the 
molecular architecture and thus bond-vibration characteris-
tics (Czarnecki et al. 2015; Williams 2019). Hence, specific 
amino acid and thus protein composition as a whole affect 
the corresponding spectral signature. Otolith protein 
composition changes with age and species-specific patterns in 
otolith amino acid composition have also been documented 
(Söllner et al. 2003; Tohse et al. 2008; Weigele et al. 2016; 
Lueders-Dumont et al. 2020). Without knowing the specific 
proteins contained in red snapper otoliths, it is difficult to 
interpret specific effects on the otolith spectral signature 
and overall age prediction. These findings have impacts on 
the future use of FT-NIRS not only for age prediction, but 
also to infer habitat and life history-related information 
from otolith signatures. Otolith chemistry is widely utilised 
in ecological studies to reconstruct migration, habitat use, 
and diet via the chronologically ordered recording of trace 
element and isotopic profiles within the otolith (e.g. Elsdon 
et al. 2008; Walther 2019). Future studies examining the 
ability of FT-NIRS to reflect fine-scale otolith protein 
dynamics would be beneficial in the pursuit of a less-
expensive and non-destructive method of discriminating 
otolith chemistry for application to broader fisheries 
management goals. 

Conclusions 

Near-infrared spectroscopy in otoliths shows potential for 
application to a wide range of fisheries research areas, 
including age estimation. However, the realisation of its 
potential will progress only as fast as our understanding of 
otolith compositional dynamics, which act alongside otolith 
morphometrics to drive NIRS spectral signatures. In-depth 
holistic studies of otolith compositional dynamics are rare, 
but recent advances in high-resolution detection and 
visualisation of key constituents (e.g. Thomas et al. 2019, 
2020; Hüssy et al. 2021a) highlight their usefulness. 
Otoliths are increasingly used as fine-scale chemical 
chronometers to reconstruct environmental and metabolic 
histories; NIRS could be a transformative tool in these 
pursuits, but the integrative nature of physical and chemical 
properties inherent to NIRS analysis cannot be disregarded. 

Supplementary material 

Supplementary material is available online. 
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